
SSHHOORRTT DDEESSCCRRIIPPTTIIOONN

MMAAIINN
AddEventHandler Installs a event handler for a specific event ID
BootReason Returns the reason of the last power up
CallBIOS Calls the firmware’s BIOS routine
CallFirmware Calls a firmware routine
CallFirmwareA Calls a firmware routine
CallFirmwareA64 Calls a firmware routine
CallFirmwareT Calls a firmware routine
CallTraceEnable Enables or disables a call trace
CallTraceEnter Marks the start of a subroutine
CallTraceExit Marks the end of a subroutine
CallTraceComment Adds a text string to the log
CallTraceExitResult Marks the end of a subroutine and adds a text string to the output
CallTraceInit Initializes a call trace
DelEventHandler Removes a handler installed by AddEventHandler
EnqueueEvent Puts an event into the event queue
FindInstructionSequence Locates a pattern in the firmware
FlushCache Flushes the data cache and invalidates the instruction cache
GetFWInfo Returns details about the current firmware
GetHeapParameter Returns some details about the heap
GetToppyString Returns a text string to a SysID

IdentifyFirmware Returns some info about a firmware (needs Firmware.dat)
InitTAPex Initializes the library.
InitTAPexFailedMsg Displays a message box with some device and firmware info. Should be called

when InitTAPex returns FALSE.
intLock Locks all CPU interrupts
intUnlock Unlocks all CPU interrupts
isMasterpiece Returns whether the Toppy is a Masterpiece/6000 style device
iso639_1 Returns the ISO639-1 language ID
isValidRAMPtr Checks if a pointer is location within RAM (0x80000000-0x83ffffff, 0xa0000000-

0xa3ffffff)
LE16 Swaps the endian of a 16-bit word
LE32 Swaps the endian of a 32-bit dword
LoadFirmwareDat Loads the file Firmware.dat and returns pointer to the structure
Log Appends a text line to a log file and optionally writes it to the console
Now Returns the current date and time in the Topfield format

PatchInstructionSequence Patches a sequence of instructions in RAM
SendToFP Sends data to the front panel processor
SetCrashBehaviour Defines how the firmware reacts upon the next crash. (can modify the firmware

only once!)
SuppressedAutoStart Returns whether the automatic start of TAPs has been suppressed with the 0 key

AAUUDDIIOO // VVIIDDEEOO // OOSSDD

CaptureScreen Captures the screen (with or without OSD)
DrawOSDLine Draws a line
EndMessageWin Removes a asynchronous message window
FindDBTrack Returns the track index of the dolby channel
FreeOSDRegion Deletes a OSD region without erasing the onscreen graphic
GetAudioTrackPID Returns the PID of one of the 64 possible audio tracks
GetCurrentEvent Returns information about the EPG event of the current channel which is marked as

running
GetFrameBufferPixel Returns the colour of pixel in the video frame buffer
GetFrameSize Returns the size of the current video frames
GetOSDMapAddress Returns a pointer to the OSD map in memory
GetOSDRegionHeight Returns the height of a OSD region
GetOSDRegionWidth Returns the width of a OSD region

GetPinStatus Returns the status of the PIN entry window [doesn't work right now]
GetPIPPosition Returns the current location of the PIP
GetSysOsdControl Has a system OSD infobox been deactivated?
InteractiveGetStatus Returns whether interactive is enabled (TF5800 only)
InteractiveSetStatus Activates or deactivates the interactive mode (TF5800 only)
isAnyOSDVisible Checks if a specified screen area contains an OSD graphic
isOSDRegionAlive Checks if a OSD region is still active
MHEG_Status Returns the current MHEG status
OSDCopy Copies a OSD buffer x times
SaveBitmap Saves a captured screen into a file
SetRemoteMode Enables or disables a specific remote mode
ShowMessageWin Displays a message window on the screen
ShowMessageWindow Extended version of ShowMessageWin
SoundSinus Beep
SubtitleGetStatus Returns if subtitle is enabled
SubtitleSetStatus En-/disables the subtitle
TAP_Osd_PutFreeColorGd Copies a Gd object into a OSD region with a specific colors
TunerGet Returns the tuner number of the main or PIP service
TunerSet Sets the tuner number of the main service

YUVB Returns the blue component of a YUV color

YUVG Returns the green component of a YUV color
YUVR Returns the red component of a YUV color

DDIIAALLOOGG
DialogEvent Forwards events to a dialog window. Used events (e.g. key presses for scrolling)

will be set to 0.
DialogMsgBoxButtonAdd Adds a user defined button to a messagebox (5 max)
DialogMsgBoxExit Terminates a message box
DialogMsgBoxInit Initializes the structures of a message box
DialogMsgBoxShow Displays a message box
DialogMsgBoxShowInfo Displays a message box without any buttons
DialogMsgBoxShowOK Displays a message box with a OK button
DialogMsgBoxShowOKCancel Displays a message box with the buttons OK and Cancel
DialogMsgBoxShowYesNo Displays a message box with the buttons Yes and No
DialogMsgBoxShowYesNoCancel Displays a message box with the buttons Yes, No and Cancel
DialogMsgBoxTitleSet Modifies the title of the message box
DialogProfileChange Assigns a new user profile
DialogProfileLoad Loads a user profile
DialogProfileLoadDefault Loads the default user profile (/ProgramFiles/DialogProfile.ini)
DialogProfileSave Saves a user profile
DialogProfileSaveDefault Makes the current profile the default profile
DialogProfileScrollBehaviourChange Changes the scroll behaviour of the current profile
DialogProgressBarExit Terminates a progress bar window
DialogProgressBarInit Initializes the structures of a progress bar
DialogProgressBarSet Sets the progress bar to a specific value
DialogProgressBarShow Displays a progress bar
DialogProgressBarTitleSet Modifies the title of a progress bar window
DialogWindowAlpha Temporarily changes the alpha blending of a dialog window
DialogWindowChange Assigns a new window profile
DialogWindowCursorChange Turns the cursor on or off
DialogWindowCursorSet Sets the cursor to a specific line
DialogWindowExit Terminates a dialog window
DialogWindowHide Hides a dialog window
DialogWindowInfoAddIcon Adds an icon to the info area
DialogWindowInfoAddS Adds a text string to the info area
DialogWindowInfoDeleteAll Erases the info area
DialogWindowInit Initializes the dialog structures
DialogWindowItemAdd Adds a new item to the dialog window

DialogWindowItemAddSeparator Adds a blank line to the dialog window
DialogWindowItemChangeFlags Modifies the flags of a dialog item (selectable, enabled)
DialogWindowItemChangeIcon Modifies the icon of a dialog item
DialogWindowItemChangeParameter Changes the parameter text of a item
DialogWindowItemChangeValue Changes the value of a item
DialogWindowItemDelete Deletes a single item [not yet implemented]
DialogWindowItemDeleteAll Deletes all items
DialogWindowRefresh Redraws a dialog window
DialogWindowReInit Modifies the window geometry
DialogWindowScrollDown Scroll down one line
DialogWindowScrollDownPage Scroll down one page
DialogWindowScrollUp Scroll up one line
DialogWindowScrollUpPage Scroll up one page
DialogWindowShow Displays a dialog window
DialogWindowTabulatorSet Sets the tabulator position of the parameter or value column
DialogWindowTitleChange Modifies the window title
DialogWindowTypeChange Changes the window style
InfoTestGrid Draws 10x10 pixel grid into the info area (for TAP development)

CCOOMMPPRREESSSSIIOONN

CompressBlock Compresses a data block
CompressedTFDSize Returns the size of a compressed TFD structure
CompressTFD Compresses a data block into a TFD structure
CRC16 Calculates the 16-bit CRC of a memory area
TFDSize Returns te size of a TFD structure
UncompressBlock Decompresses a data block
UncompressedFirmwareSize Returns the uncompressed size of a packed firmware
UncompressedLoaderSize Returns the uncompressed size of a packed loader
UncompressedTFDSize Returns the uncompressed size of a packed TFD file
UncompressFirmware Decompresses a packed firmware
UncompressLoader Decompresses a packed loader
UncompressTFD Decompresses a packed TFD file

FFIILLEESSEELLEECCTTOORR
FileSelector Opens the FileSelector
FileSelectorKey Checks if a key is used by FileSelector

FFLLAASSHH

AddSec Adds or subtracts the number of seconds from a time value.
AddTime Adds or subtracts the number of minutes from a time value.

DATE Converts a date / hour / minute into the Topfield internal date format
FlashAddFavourite Adds a new favourite
FlashDeleteFavourites Deletes all favourites
FlashFindEndOfServiceNameTableAddress Returns a pointer to the end of the service name table
FlashFindEndOfServiceTableAddress Returns a pointer to the end of the service table
FlashFindServiceAddress Finds and returns a pointer to a specific service
FlashFindTransponderIndex Finds and returns a pointer to a specific transponder
FlashGetBlockStartAddress Returns a pointer to the start of a block
FlashGetChannelNumber Returns the frequency and channel number of a service (DVB-t only)
FlashGetSatelliteByIndex Returns a pointer to a specific satellite (DVB-s only)
FlashGetServiceByIndex Returns a pointer to a specific service
FlashGetServiceByName Returns a pointer to a specific service referenced by it’s name
FlashGetTransponderCByIndex Returns the transponder info (DVB-c version)
FlashGetTransponderSByIndex Returns the transponder info (DVB-s version)
FlashGetTransponderTByIndex Returns the transponder info (DVB-t version)
FlashGetType Returns the system of the Toppy (DVB-s, -t, or -c)
FlashProgram Writes the shadow of the Flash into the Flash chip

FlashReindexFavourites Reindexes the favourites if a service has been added or deleted
FlashReindexTimers Reindexes the timers if a service has been added or deleted
FlashRemoveCASServices Deletes all services marked with a $ sign
FlashRemoveServiceByIndex Deletes a service addressed by an index
FlashRemoveServiceByIndexString Deletes a service addressed by an index string
FlashRemoveServiceByLCN Deletes one or more services addressed by a LCN (DVB-c and DVB-t)
FlashRemoveServiceByName Deletes a service addressed by its name
FlashRemoveServiceByPartOfName Deletes a service addressed by a part of its name
FlashRemoveServiceByUHF Deletes one or more services addressed by a VHF/UHF channel number
FlashServiceAddressToServiceIndex Converts a pointer to an service index
FlashWrite Writes data directly into the flash memory (Use only if you know what you're

doing!)
GetEEPROMAddress Returns the address of the EEPROM shadow in memory
GetEEPROMPin Returns the user defined PIN code
HOUR Extracts the hour from the Topfield internal date format
MINUTE Extracts the minutes from the Topfield internal date format
MJD Extracts the date from the Topfield internal date format
TimeDiff Calculates the difference in minutes between two time values

HHAARRDDDDIISSKK

HDD_AAM_Disable Disables Automatic Acoustic Management
HDD_AAM_Enable Enables Automatic Acoustic Management
HDD_APM_Disable Disables Advanced Power Management
HDD_APM_Enable Enables Advanced Power Management
HDD_BigFile_Read Reads a sector from a file and is not restricted to the 2GB limit
HDD_BigFile_Size Returns the size of a file in sectors.
HDD_BigFile_Write Writes a sector from a file and is not restricted to the 2GB limit. This function can

not increase the size of a file!
HDD_ChangeDir Changes the current directory and accepts a full path
HDD_FappendOpen Opens a file to append text
HDD_FappendWrite Appends text to the end of a text file
HDD_FreeSize Returns the free disk space in MB. This function doesn’t access the disk thus

doesn’t wake it up from standby.
HDD_GetClusterSize Returns the size of one cluster in sectors
HDD_GetFirmwareDirCluster Returns the cluster number of the firmware’s current directory
HDD_GetHddID Returns the type, serial number and firmware revision of the HDD

HDD_GetHddInfo Returns some Data about the built in HDD
HDD_IdentifyDevice Returns the IdentifyDevice information block
HDD_LiveFS_GetChainLength Returns the number of cluster of a FAT chain
HDD_LiveFS_GetFAT1Address Returns the address of the FAT in memory
HDD_LiveFS_GetFAT2Address Returns the address of the FAT copy in memory
HDD_LiveFS_GetFirstCluster Returns the first cluster of a FAT chain
HDD_LiveFS_GetLastCluster Returns the last cluster of a FAT chain
HDD_LiveFS_GetNextCluster Returns the next cluster of a FAT chain
HDD_LiveFS_GetPreviousCluster Returns the previous cluster of a FAT chain (very slow!)

HDD_LiveFS_GetRootDirAddress Returns the address of the root directory in memory
HDD_LiveFS_GetSuperBlockAddress Returns the address of the superblock in memory
HDD_Move Moves a file from one to another directory
HDD_ReadClusterDMA Reads a cluster from the HDD
HDD_ReadSector Reads a sector in PIO mode. At this time, no other processes should access the disk

(Play, Rec, TS)
HDD_ReadSectorDMA Reads a sector from the HDD
HDD_SetCryptFlag Sets the crypt flag of an open file
HDD_SetFileDateTime Sets the date and time of an open file
HDD_SetSkipFlag Sets the skip flag of an open file
HDD_SetStandbyTimer Sets the standby timeout of the HDD

HDD_Smart_DisableAttributeAutoSave Disables SMART attribute auto-save
HDD_Smart_DisableOperations Disables SMART
HDD_Smart_EnableAttributeAutoSave Enables SMART attribute auto-save
HDD_Smart_EnableOperations Enables SMART
HDD_Smart_ExecuteOfflineImmediate Starts an offline check
HDD_Smart_ReadData Reads the SMART information. At this time, no other processes should access the

disk (Play, Rec, TS)
HDD_Smart_ReadThresholdData Reads the SMART threshold information. At this time, no other processes should

access the disk (Play, Rec, TS)
HDD_Smart_ReturnStatus Returns the SMART Status (good, failed)
HDD_Stop Shuts down the disk
HDD_TouchFile Sets the file date to the current time
HDD_TranslateDirCluster Translates a cluster number into a directory string
HDD_TruncateFile Truncates a file to a specific size [doesn't support cluster boundaries]
HDD_Write Buffered Write
HDD_WriteClusterDMA Writes a cluster to the HDD
HDD_WriteSectorDMA Writes a sector to the HDD

HHOOOOKKSS

HookEnable Enables/disables a hook
HookExit Disables all hooks
HookIsEnabled Returns the enable/disable status of a hook
HookMIPS_Clear Removes a firmware hook
HookMIPS_Set Creates a firmware hook (these are different to the Hook* functions)
HookSet Sets a Firmware hook

IIIICC BBUUSS

ReadEEPROM Reads the contents of the EEPROM
ReadIICRegister Reads a register of one of the IIC chips (EEPROM, A/V-matrix, tuner).
WriteIICRegister Writes a register of an IIC chip

IIMMEEMM

IMEM_Alloc Allocates memory
IMEM_Compact Reorganizes the internal tables
IMEM_Free Frees allocated memory
IMEM_GetInfo Returns information about the available memory
IMEM_Init Initializes the memory manager
IMEM_isInitialized Reports if the memory manager has been initialized
IMEM_Kill Closes the memory manager and frees the allocated memory

IINNII FFIILLEESS

INICloseFile Closes an INI file
INIGetARGB Returns a ARGB color from a specific key
INIGetRGB Returns a RGB color from a specific key
INIGetRGB8 Returns a RGB color from a specific key, assuming that the INI uses 8 bit values
INIGetHexByte Returns a byte from a hex string from a specific key
INIGetHexDWord Returns a dword from a hex string from a specific key
INIGetHexWord Returns a word from a hex string from a specific key
INIGetInt Returns an integer from a specific key
INIGetString Returns a string from a specific key
INIKeyExists Checks if a specific key exists
INIKillKey Removes a key from a INI file

INILocateFile
Returns the location of a file (current dir, /PF, /PF/Settings,
/PF/Settings/<AppName>)

INIOpenFile Opens an INI file
INISaveFile Saves an INI file
INISetARGB Writes a ARGB color to a specific key

INISetRGB Writes a RGB color to a specific key
INISetRGB8 Writes a RGB color to a specific key, expanding the colors to 8 bit values
INISetComments [Comments are not yet implemented]
INISetHexByte Writes a byte to a specific key
INISetHexDWord Writes a dword to a specific key
INISetHexWord Writes a word to a specific key
INISetInt Writes an integer to a specific key
INISetString Writes a string to a specific key
LangGetString Returns a language-dependent string
LangLoadStrings Loads a language-dependent text ini
LangUnloadStrings Releases the memory for the language-dependet strings

MMAASSTTEERRPPIIEECCEE // 66000000 VVFFDD

MPDisplayClearDisplay Clears the display
MPDisplayClearSegments Clears single segments
MPDisplayDisplayLongString Displays a string in the 8 digit display
MPDisplayDisplayShortString Displays a string in the 4 digit display
MPDisplayGetDisplayByte Returns a byte out of the 48 byte display buffer
MPDisplayGetDisplayMask Returns a byte out of the 48 byte mask buffer
MPDisplayInstallMPDisplayFwHook Activates the MP-display hook
MPDisplaySetAmFlag Sets the AM flag
MPDisplaySetColonFlag Sets the colon in the 4 digit display
MPDisplaySetDisplayByte Sets a byte in the 48 byte display buffer
MPDisplaySetDisplayMask Sets a byte in the 48 byte mask buffer
MPDisplaySetDisplayMemory Copies a 48 byte buffer into the display buffer
MPDisplaySetDisplayMode Selects the different display modes
MPDisplaySetPmFlag Sets the PM flag
MPDisplaySetSegments Sets single segments
MPDisplayToggleSegments Toggles single segments
MPDisplayUninstallMPDisplayFwHook Deactivates the MP-display hook
MPDisplayUpdateDisplay Writes the VFD buffer to the display

PPAATTCCHHEESS
PatchLoadModule Loads a TFP file

PatchLoadModuleGP
Loads the specific patch for a particular $gp and all generic patches from a TFP
file. It is therefore more resource friendly than PatchLoadModule.

PatchUnloadModule Removes a TFP file from memory
PatchFindType Scans a f/w if a patch is installable
PatchApply Installs or removes a patch

PatchInstallID Registers a PatchID
PatchIsInstalled Returns the info if a specific PatchID is registered
PatchGetInstalled Returns a string with all PatchIDs

PatchRemoveID Removes a PatchID
PatchCleanList Copies all PatchIDs into a temp. list and removes them from the firmware
PatchReinstallList Copies the PatchIDs from the temp. list back into the f/w

RREECC SSTTRREEAAMMSS

HDD_DecodeRECHeader Identifies the type of REC header and decodes it
HDD_EncodeRECHeader Creates a REC header
HDD_FindPCR Returns the first PCR from a REC stream buffer
HDD_FindPMT Locates a PMT in a REC stream buffer and updates the REC header structure.
HDD_isAnyRecording Is the Toppy recording anything right now?
HDD_isCryptedStream Checks if a buffer contains crypted TS packets
HDD_isRecording Is the Toppy recording on one slot right now?
HDD_MakeNewRECName Adds a sequence number or 2 random characters to a REC file name
HDD_PausePlayback Pausiert eine Aufnahme und setzt sie wieder fort
HDD_PlaySlotGetAddress Returns the address of the tPlaySlot structure in the memory
HDD_RecalcPlaytime Calculates the playtime of a REC file
HDD_RECSlotGetAddress Returns the address of the tRECSlot structure in the memory
HDD_RECSlotIsPaused Returns the info if a recording is pausing
HDD_RECSlotPause This function can pause a recording
HDD_RECSlotSetDuration Changes the duration of a active recording

SSHHUUTTDDOOWWNN

Reboot Reboots the Toppy
Shutdown Stops a task (Rec, Play, Video or Audio) or shuts the Toppy down

SSTTRRIINNGGSS

ExtractLine Returns a line from a text block
GetLine Returns a line from a text block (improved version)
LowerCase Converts all letters into lower case
MakeValidFileName Removes invalid characters from a string
ParseLine Searches for a substring in a string and divides the string at that position
RTrim Removes spaces from the end of a string
SeparatePathComponents Separates a full path into its components
StrEndsWith Checks if a string ends with a specific pattern
TimeFormat Creates a String from a date and time
UpperCase Converts all letters into upper case
ValidFileName Removes invalid characters from a file name

TTAAPPSS

HDD_TAP_Callback Calls a function in an other TAP
HDD_TAP_Disable Disables a TAP (the target won’t receive any events)
HDD_TAP_DisableAll Disables all TAPs except the caller
HDD_TAP_GetCurrentDir Returns the current directory path of the TAP
HDD_TAP_GetCurrentDirCluster Returns the HDD cluster number of the current directory
HDD_TAP_GetIDByFileName Returns the ID from a TAP-File
HDD_TAP_GetIDByIndex Returns the ID from a TAP table index
HDD_TAP_GetIndexByID Returns the TAP table index of a specific TAPID
HDD_TAP_GetInfo Returns a lot of info about a loaded TAP
HDD_TAP_GetStartParameter Returns a pointer to the parameter block in the server TAP
HDD_TAP_isAnyRunning Checks if any TAP beside the caller is running
HDD_TAP_isBatchMode Checks if the calling TAP has been launched in batch mode
HDD_TAP_isDisabled Has a TAP being disabled? This also includes TAPs disabled by the TSRCommander.
HDD_TAP_isDisabledAll Have all TAPs being disabled?
HDD_TAP_isRunning Checks if a specific TAP is running
HDD_TAP_PopDir Pops one entry from the dir. stack and changes to that dir
HDD_TAP_PushDir Pushes the current TAP directory onto a stack
HDD_TAP_SendEvent Sends an event to all TAPs. There are no restrictions to event, param1 and param2. The

event is not passed to the firmware.

HDD_TAP_SetCurrentDirCluster Sets the current directory
HDD_TAP_Start Launches a TAP.
HDD_TAP_StartedByTAP Has this TAP being started by an other TAP?
HDD_TAP_Terminate Terminates a TAP [untested]

TTAAPPCCOOMM

TAPCOM_CloseChannel Client closes the communication channel
TAPCOM_Finish Server has finished processing the request
TAPCOM_GetChannel Server gets the details about the clients request
TAPCOM_GetReturnValue Tells the client the return value of the server
TAPCOM_GetStatus Client checks the current state of the channel
TAPCOM_LastAlive When was the server’s last StillAlive response? (asynchronous communication only)
TAPCOM_OpenChannel Client opens a communication channel to a server
TAPCOM_Reject Server can not execute the request (right now)
TAPCOM_StillAlive Server reports that it is still busy with the request

TTAAPPAAPPIIFFIIXX

InitTAPAPIFix Initializes this part of the library. See below for details.

TTAAPPAAPPIIFFIIXX

The following bugs have been intercepted by tapapifix:

TAP_Hdd_GetPlayInfo Bufferoverrun
TAP_Hdd_GetRecInfo Bufferoverrun
TAP_Hdd_Fseek Wrong SEEK_END-position with files, which size is a multiple of 512
TAP_Hdd_Flen If the files size is a multiple of 512, Flen reports 512 bytes too little
TAP_Hdd_ChangeDir Different return value for firmware versions prior to V5.12.0
TAP_Channel_SetAudioTrack Jumping in a replay will change back to the default audio track
TAP_Hdd_Delete Deleting a file with a long name and a dot in the first part of the name, may freeze the

Toppy
TAP_Hdd_Fwrite Doesn’t write junk to the end of a file
TAP_Hdd_StopTs Doesn’t crash in normal mode

IINNCCLLUUDDIINNGG TTHHEE FFIIRREEBBIIRRDDLLIIBB

* Add a #include "libFirebird.h" into your .c-file
* Modify the Build.bat and add the FireBird-archive to the linker command e.g.:

 mips-ld --cref -o filer.elf -T ..\TAP.LD filer.o filerdb.o -l FireBird -l tap -l c -l gcc -l FireBird -Map filer.map

The FireBird-library needs to be the first –l option. If you’re using the original Topfield compiler, the library needs to be
linked again as the last library (see above).

HHOOWWTTOO
FFIIRRMMWWAARREE HHOOOOKKSS

A hook redirects the execution in the firmware to a TAP. At this state, it is possible to analyze and modify CPU registers or
memory locations. But it is not possible to hook all addresses. Some hooks are quite stable, others let the Toppy crash
immediately.

The first step is to define a hook handler:

void HookHandler (dword HookIndex, tCPURegs *CPURegs)

Afterwards a hook can be installed:

dword HookIndex = HookSet (FirmwareEntryPoint, (dword *) HookHandler);
HookEnable (HookIndex, TRUE);

It is possible to set more than one hook. HookSet returns an index, which can be used the enable or disable a hook and which
is also reported in the HookIndex parameter of the HookHandler. So it is possible to distinguish the different hooks in a
single hook handler. And don’t forget to deactivate the hooks before terminating a TAP!

HookExit();

TTAAPPCCOOMM
LLAAUUNNCCHHIINNGG AA TTAAPP

HDD_TAP_Start launches a TAP and allows passing parameters and a batch flag to the launched TAP. The batch flag might
be used to perform some tasks without any user invention. 3PG, for example, can be launched in batch mode. In this mode,
3PG performs a full scan and terminates itself after it has finished the scan. The parameters and the batch flag is only valid
within TAP_Main!

-- the client --

typedef struct
{
 char Dir [80];
 char FileName [80];
} tParameters;

tParameters Parameters;
dword TAPID;

//The client launches an editor and passes the directory and name of the file to edit
//Batch mode is not used.
TAP_SPrint (Parameters.Dir, "/ProgramFiles");
TAP_SPrint (Parameters.FileName, "3PG.ini");
HDD_TAP_Start ("editor.tap", FALSE, &Parameters, &TAPID);

//Wait until the editor has been terminated
do
{
 TAP_SystemProc();
} while (HDD_TAP_isRunning (TAPID_Editor));

-- the server --

typedef struct
{
 char Dir [80];
 char FileName [80];
} tParameters;

tParameters *Parameters;

int TAP_Main(void)
{
 //The editor doesn't use batch mode but this is how it works
 if (HDD_TAP_isBatchMode())
 {
 ...
 }

 //Are there any paramters?
 Parameters = HDD_TAP_GetStartParameter();
 if (Parameters != NULL)
 {
 //Save them as they will only be valid within TAP_Main
 }
 ...
}

SSYYNNCCHHRROONNOOUUSS TTAAPP TTOO TTAAPP CCOOMMMMUUNNIICCAATTIIOONN

This means that the client immediately receives a result and there won’t be any additional action from the server. In contrast
there are also the asynchronous communication (execution of a command lasts some time) and broadcasts (an information is
sent to several servers).

The simple demo (see .Demo directory) consists of 1 server and 2 clients. The server offers a service which adds two integer
numbers. To make it a little bit harder, the client must reserve the server before requesting the service. This reservation has
nothing to do with TAPCOM, but is a feature of the demo server (e.g. like a client may reserve the front panel display so only
one client has access at the same time). The demo uses the following remote keys:

1 = Client 1 reserves server
2 = Client 1 lets the server do the calculation
3 = Client 1 releases the server

The keys 4 to 6 do the same with client 2. UHF exits the server and both clients. All output is sent to the serial console.

The Client

The order of events is always the same:

• Open a communication channel and inform the server about what he should do
• Check the status of the channel and the return value (if necessary)
• Close the communication channel

//Calls a server and sends the command ReserveServer. No parameters are passed.
Channel = TAPCOM_OpenChannel (TAPCOM_App_DemoServer, TAPCOM_DemoServer_ReserveServer, 0, NULL);

//Check the channel status and act accordingly.
Status = TAPCOM_GetStatus (Channel);

//Close the channel
TAPCOM_CloseChannel (Channel);

The client may receive the following status codes:

TAPCOM_Status_SERVER_NOT_AVAILABLE: the server TAP hasn’t been launched. It may be launched by the client.

TAPCOM_Status_REJECTED: the command is unknown or can’t be executed right now (e.g. the server has been reserved by
a different client).

TAPCOM_Status_FINISHED: the command has been finished. If successful or not can be checked via
TAPCOM_GetReturnValue.

TAPCOM_Status_VERSIONMISMATCH: client and server use an incompatible version of the TAPCOM library. The server
didn’t receive that command.

There are 2 more status codes but aren’t used in a synchronous communication:

TAPCOM_Status_OPEN: the server has been loaded, but didn’t react to our command (bad with sync. comm., normal for
broadcasts).

TAPCOM_Status_ACKNOWLEDGED: the server has received the command but the execution takes time (used with the
async. comm.)

Parameters and data are optional and the data structure is defined by the server. The client reserves the necessary memory
and the server accesses it via a pointer. Therefore a client must not free that memory as long as the channel status is
ACKNOWLEDGED or OPEN. In our sample, the client initializes the first two variables of the structure and receives the
result from the server in the variable Result. The following lines do not check if the server has done the calculation (see the
demo for more details).

typedef struct
{
 dword Number1;
 dword Number2;
 dword Result;
} tTAPCOM_DemoServer_Parameter; //defined in TAPCOM_DemoServer.h

tTAPCOM_DemoServer_Parameter Parameter;

Parameter.Number1 = 1;
Parameter.Number2 = 2;

Channel = TAPCOM_OpenChannel (TAPCOM_App_DemoServer, TAPCOM_DemoServer_ExecAdd,
TAPCOM_DemoServer_ParameterVersion, (void*) &Parameter);

TAP_Print ("Sum = %d\n", Parameter.Result);

The Server

The implementation of a server is similar to a client. The server receives the request via an event (EVT_TAPCOM). This is
not a real event, like EVT_KEY, and therefore the firmware doesn’t recognize it. Afterwards the server picks up the details
with TAPCOM_GetChannel. If the return value of this function is 0, then the event wasn’t meant for that particular server.
Otherwise the server should perform the requested operation and close the channel with TAPCOM_Finish. The return value
transmitted with this function can be checked by the client with TAPCOM_GetReturnValue. If the server is not able to
execute the function, it has to inform the client with a TAPCOM_Reject. This concludes the servers TAPCOM commands.
Coding a server might be a little bit more difficult as he has to do all the plausibility checks. But this doesn’t have to do with
the TAPCOM lib. The simplest case would be a TAPCOM_GetChannel followed by a TAPCOM_Finish.

Our sample server performs the following tasks:

• Execution of the 3 self defined commands „ReserveServer“, „ExecAdd“ and „ReleaseServer“.
• Rejection of requests from clients which didn’t reserve the server.
• Checks if the client, who has reserved the server, is still running. If not, the server terminates the reservation.

See the .Demo directory for some examples.

AASSYYNNCCHHRROONNOOUUSS CCOOMMMMUUNNIICCAATTIIOONN

The asynchronous communication is used whenever the execution of an operation may take longer.

Client

Comparison with the sync. comm:

• The server immediately returns the status TAPCOM_Status_ACKNOWLEDGED or TAPCOM_Status_REJECTED
• The client needs to call TAPCOM_GetStatus to recognize the end of the command execution
• The client may call TAPCOM_LastAlive. This function returns the tick count of the servers last “I’m still busy with

your command”.

Server

Comparison with the sync. comm:

• The server needs to return TAPCOM_Status_ACKNOWLEDGED or TAPCOM_Status_REJECTED immediately
• The server needs to call TAPCOM_StillAlive continuously to notify the client that it is still busy with its request

BBRROOAADDCCAASSTT

A broadcast sends a message to all TAPs (TargetID at OpenChannel = TAPCOM_App_BROADCAST). A
parameter block may be passed to the servers and they may return data and a result code. In this case, the last
server returning data wins.

Comparison with the sync. comm:

• A broadcast is always synchronous
• A server may not answer with TAPCOM_Status_ACKNOWLEDGED or TAPCOM_Status_REJECTED
• After control has been passed back to the client, the channel status is TAPCOM_Status_Open

	Short Description
	Main
	Audio / Video / OSD
	Dialog
	Compression
	FileSelector
	Flash
	Harddisk
	Hooks
	IIC Bus
	IMEM
	INI Files
	Masterpiece / 6000 VFD
	Patches
	REC Streams
	Shutdown
	Strings
	TAPs
	TAPCOM
	tapapifix
	tapapifix

	Including the FireBirdLib
	HowTo
	Firmware Hooks
	TAPCOM
	Launching a TAP
	Synchronous TAP to TAP Communication
	Asynchronous Communication
	Broadcast

